
1

Bringing distributed software development
to SD modelling with Vensim

Nicki Daniel Helfrich1 (corresponding author), Wolfgang Schade2

1) Fraunhofer Institute Systems and Innovation Research (ISI)
Breslauer Strasse 48, 76139 Karlsruhe, Germany

Phone: +49 721 6809 364
Email: nicki.helfrich@isi.fraunhofer.de

2) Fraunhofer Institute Systems and Innovation Research (ISI)
Breslauer Strasse 48, 76139 Karlsruhe, Germany

Phone: +49 721 6809 353
Email: w.schade@isi.fraunhofer.de

Version 1 (2008-03-21)

Abstract

Maintaining one of the most complex System Dynamics model – ASTRA – with a group
of more than 5 economists, we were facing two main problems. First, collaboration was
difficult because all developers had to work with different files and changes had to be
manually transferred into one model. Second, calibration was time consuming, since the
complete model needs various minutes for only one run even on high end computers.

We found a solution to these problems in transferring techniques from distributed soft-
ware development to SD modelling. We split our complex ASTRA model into more than
40 modules, developed standards for these modules to be able to run them independ-
ently and to enable automatic merging of any amount of modules to one model, devel-
oped a tool for automatically executing this merge in order to run the complete ASTRA
model and we set up a version controlled repository accessible by all developers via
internet to manage the simultaneous development work of our modelling team which is
spread out over three institutes in two countries.

In this paper, we would like to present in detail the individual task as described above
and conclude with our experiences after this major transformation of our ASTRA model.

Keywords:
Large scale SD modelling, modularization, version controlled repository, distributed
modelling

2

1 Introduction
Maintaining one of the most complex System Dynamics model – ASTRA – with a
group of more than 5 economists, we were facing two main problems.

First, collaboration was difficult because all developers had to work with different files
and changes had to be manually transferred into one model. With this way of working,
it was highly difficult or even impossible to maintain one up-to-date model containing
all implemented structures by all model developers.

Second, calibration was time consuming, since the complete model needs various min-
utes for only one run even on high end computers. Calibrating the ASTRA model could
only be done in reasonable time by sequentially extracting each logical unit of the
model, creating a standalone version thereof, calibrating that part and putting the cali-
bration results back into the complete ASTRA model as described by Schade and Krail
(Schade, Krail 2006). This used to be a time-consuming task containing many repetitive
steps.

We found a solution to these problems in transferring techniques from distributed soft-
ware development to SD modelling. The underlying idea is that it should be easier to
maintain many small modules rather than one big model.

Therefore we split the ASTRA model into more than 40 modules. These were designed
in a way to make it possible for each module to be run as a standalone SD model, which
is essential for testing during extending the functionality as well as for the calibration
process.

Also, each module was designed in accordance with dedicated standards in order to en-
able an automated merging of any number of modules into one functioning SD model.

For performing this merge, we developed a java-based tool, the Merger, using "regular
expressions" technology. It produces a valid SD model which can be run in Vensim
without any further adjustments. This was necessary since Vensim does not support
modularization of SD models. The development of Merger was inspired by the devel-
opment of the conductor as described by Thompson and Bush (Thompson, Bush 2006).
We would like to explicitly thank these developers for sharing their ideas with our
community, enabling us to further develop their ideas to implement software which
completely suits our needs.

Additionally to the modularization, we had to think of a way to systematically handle
the problem of different versions resulting from the ongoing development of our model
by a team spread out over three locations in two countries.

Therefore, we decided to introduce a "version control" software, namely Subversion, a
widespread, open-source software. It allows a team of developers to always keep up
with the current status of a project via a common file sharing server accessible via inter-
net. About four hundred revisions of ASTRA later, our experience is highly positive and
we never regretted our decision to go down that road.

This work was done during the TRIAS project as described by Schade et al. (Schade et
al. 2008) and Krail et al. (Krail et al. 2007). This paper describes in detail all the steps
taken.

3

Chapter 2 gives an overview on the original structure of ASTRA. Chapter 3 describes
the standards needed for modularization along with the tool we developed for merging
modules back to one model. Chapter 4 briefly sketches the technology used. Chapter 5
describes how we use a version controlled repository for team collaboration and chapter
6 gives a short overview of the practical work with the tool we developed before chapter
7 draws a final conclusion.

2 Where we came from – the structure of ASTRA
When starting the project described in this paper in early 2007, the complete ASTRA
model was implemented in one single Vensim model file, leading to the problems de-
scribed in the introduction chapter.

ASTRA (=Assessment of Transport Strategies) is a System Dynamics model generating
time profiles of variables and indicators needed for policy assessment. Details of the
ASTRA model are described by Schade (Schade 2005). Originally ASTRA was devel-
oped on the base of existing models that have been converted into a dynamic formula-
tion feasible to be implemented in System Dynamics. Among these models have been
macroeconomic models and classical four stage transport models (SCENES, ME&P
2000). ASTRA runs scenarios for the period 1990 until 2050 using the first twelve years
for calibration of the model. Data for calibration stems from various sources with the
bulk of data coming from the EUROSTAT (2005) and the OECD online databases
(2005).

The ASTRA model consists of nine modules covering the 27 Western European Union
countries (EU27) plus Norway and Switzerland, (EU29). The major interlinkages be-
tween the nine modules are shown in Figure 1. Purposes of the modules are:

• Population module (POP) calculates the population development and population
structure for the EU29 countries with one-year age cohorts.

• Macroeconomics module (MAC) provides the national economic framework. The
MAC combines different theoretical concepts as it incorporates neo-classical ele-
ments, Keynesian elements and elements of endogenous growth theory.

• Regional economics module (REM) describes spatial changes and the generation of
transport on the level of sub-national functional zones.

• Foreign trade module (FOT) estimates trade flows by sector by country combination
e.g. trade of vehicles from Sweden to Spain etc.

• Transport module (TRA) provides the modal-split of transport demand and calculates
the transport performance by mode for passenger and freight transport as well as ve-
hicle kilometres travelled.

• Vehicle fleet module (VFT) delivers the composition of the road vehicle fleets dif-
ferentiated into different vehicle sizes, engine types and emission standards.

• Environment module (ENV) calculates the fuel consumption for the different fuels
and the emissions of transport. Based on the fuel consumption also fuel tax revenues
are calculated.

4

Figure 1: Overview on the ASTRA model

POP

MAC

FOT

REM

TRA

WEM

ENV

VFT

Potential Labour Force Population Structure

D
is

po
sa

bl
e

In
co

m
e

C
on

su
m

pt
io

n,
 In

ve
st

m
en

t i
n

V
eh

ic
le

s,
V

A
T

GDP, (Un-)Employment, Sectoral Output

Population Change

V
K

T

Goods Flows

C
ar

 F
le

et

Fuel Price

GDP, Productivity

Exports, Imports

Transport Expenditure,
Performance, Time

VAT Revenue
Fuel Tax Revenue

GDP, Employment,

Fu
el

Pr

ic
e

Emissions, Noise,
Accidents

Transport Cost, Time OD
Transport Demand OD

POP = Population Module
MAC = Macroeconomics Module
REM = Regional Economics Module
FOT = Foreign Trade Module

Abbreviations:
INF = Infrastructure Module
TRA = Transport Module
ENV = Environment Module
VFT = Vehicle Fleet Module
WEM = Welfare Measurement Module

ASTRA Modules and Main Interfaces

Generalized Cost OD

Fleet Structure

INF

Infrastructure Investment

Transport
Demand

Travel
Speed

Source: TRIAS D3 report (Krail et al. 2007)

• Welfare measurement module (WEM) provides aggregate indicators like transport
intensity, investment multipliers or cost-benefit ratios of policies.

• Infrastructure module (INF) calculates travel speeds depending on transport demand,
taking infrastructure investments into account.

5

The strength of the ASTRA model is that the nine modules are not simply connected in
a linear way, e.g. the economy driving transport and this leading to emissions, but that
various feedbacks are implemented between the modules, such that inventions in the
vehicle fleet (e.g. hydrogen cars) or new energy supply systems (e.g. renewables) feed
back into the economic system through changes of investments or cost changes.

3 Merger functionality & module definition
The functionality of Merger and the rules for the design of the modules are closely con-
nected to each other and result both from the needs defined by the task which has to be
accomplished. Therefore, both are described synchronously.

Our intention was to transform ASTRA, our large, highly sophisticated SD model im-
plemented in one single model file into a set of models for easier maintenance and de-
velopment. We wanted each of these modules to be a valid SD model able to run alone.
And, most important, this set of modules should still have the full functionality of the
original single model, i.e. the ability to compute integrated results with all the feedback
loops as described in the previous chapter.

First, we need to clearly separate between the two expressions model and module.
Therefore, it is essential to distinguish between two perspectives: a purely technical one
and the model logic. Taking the model logic perspective, a model consists of various
modules (compare Figure 1), meaning that a module is a part of the model and one
model consists of various modules. From a technical perspective a model is one single
file. So a module can be a model, technically, if it is a standalone file. Therefore, we
developed a set of conventions to be able to spit our large single file model into a set of
modules implemented as standalone model files. And we developed a java-based tool,
the Merger, to put these modules back together into one model file. The conventions
developed enable the definition of interfaces between the modules and also provide a
way to have data from other modules available in a module needing this data when run
in standalone mode.

All developers implement any changes to the ASTRA model only in the modules. For
running the complete model, Merger produces one single model, which then can be run.

So each module is designed to fulfil two functions:

1.
2.

Each module has to be a valid standalone SD model.

Merging any number of modules into one model has to result in a valid SD model
which can be run without further manipulation.

Therefore, each module has to comply with the following structure and syntax rules.
And following our formatting recommendations makes both the modules as well as the
resulting model more readable.

3.1 Interfaces between modules
All modules are linked to each other by using variables from other modules. For split-
ting the model into modules, these interfaces had to be made explicit. Doing this, we
could largely build on the work of Thompson and Bush (Thompson, Bush 2006).

6

Assuming the variable FOT_imports calculated in the module FOT (foreign trade) is
used in the macroeconomic module (MAC). In the single model file version of ASTRA,
this would mean that FOT_imports is simply used as an input variable to some variable
definition in the MAC module, e.g. for MAC_gross_domoestic_product.

But in the standalone version of the MAC module, FOT_imports is still used in this
calculation, but its definition would be missing. Therefore, we introduced it as a data
variable, receiving its values from a vdf file (Vensim data file), making it exogenous to
the standalone version of the MAC module. Due to this step, the MAC module can be
run as a standalone model.

When Merger generates one single model file from the two modules, it deletes the data
variable version of FOT_imports, and only the endogenously calculated FOT_imports
remains, providing the MAC module with dynamic results of this variable. This is visu-
alized in an example in Figure 2.
Figure 2: Example of the basic functionality of the Merger

module "FOT"

group ".in"

MAC_var_1
MAC_var_2

group "fot"

FOT_var_1
FOT_var_2
FOT_var_3
...

module "MAC"

group ".in"

FOT_var_1
FOT_var_2

group "mac"

MAC_var_1
MAC_var_2
MAC_var_3
...

model "FOT+MAC"

group ".in"

- empty !
- deleted !

group "fot"

FOT_var_1
FOT_var_2
FOT_var_3
...

group "mac"

MAC_var_1
MAC_var_2
MAC_var_3
...

M
erger

exogenous exogenous

endogenous endogenous endogenous

+

Source: own diagram

For easier identification of the data counterpart of each interface variable, each module
has to implement a group named in containing all the exogenous data variables calcu-
lated in other modules. Variables in this group have to be defined using the same sub-
script ranges as used in the definition of that variable. E.g., if a variable is defined with
two equations for two subscript ranges, then the definition in the in group must use ex-
actly this combination and not a single definition using a combined subscript range.
This is necessary because only in that way merger is able to identify pairs of variable
definitions forming the interface.

The example given in this chapter treats the least complex case of merging two mod-
ules. The design of the Merger is more general, and it allows the merging of any num-
ber of modules.

3.2 Special variable groups
There are variables which are defined in more than one module but cannot or should not
be interface (i.e. data-) variables. E.g. lookup variables are of that kind or data variables
which are exogenous to the complete model. These variables have to be placed in one of

7

the following special groups. In each module these variables have to be put in the same
special group.

These groups are:

• Control

• Global

• Subscripts

• Data

• Venapp

• Policy

These groups are treated in a special way when the according modules are merged. All
groups with the same name are merged into one and double defined variables are taken
only once. This means that we can have e.g. in the data group exactly the variables
needed by the according module. If another module also uses the same variable, then in
the merged module the entry appears only once.

It is possible to use the same name for groups in different modules. Vensim makes one
group of these by "reform and clean" the merged model. Therefore, any other group
name besides the above listed can be used in various modules. But if the same variable
is defined more than once, the ASTRA merger does not recognize this and does not re-
move the surplus definition, which results in an invalid model.

As mentioned above, lookup variables which are used in more than one module have to
be put in the Global group. This guarantees to have the according variable only once in
the merged model.

Additionally, the group out is used in every module to identify the variables which are
used by other modules. This is needed for a better overview of the structure of the
model which helps whenever the model is to be changed. The out group is not treated in
any special way by Merger, it only serves for better structuring the modules.

3.3 Syntax of a module
The Merger breaks apart each module into its elements, analyse them and puts them
together into one valid SD model file. In order to be able to do that, each module has to
comply with essential syntax restrictions. Otherwise, Merger cannot fulfil its task error
free.

(1) Underscores (or underbars as called by Vensim in dialog Tools/Options/Settings –
Show underbars) have to be activated so variable names do not contain whitespaces.

(2) No space between variable name and subscript range, i.e.
VFT_Car_Fleet_per_EU_country[EUCoun]

(3) No colon : in variable names

(4) No dot . in variable names

(5) No <-> sequence in variable names

8

3.4 Formatting of a module
The formatting rules are rather recommendations, not necessary restrictions. Following
them makes it easier to identify the interfaces and make the views in the merged model
more readable.

(1) Formatting of in-group variables: grey and italic

(2) Also, in-group variables should be shadow variables on the view level. If they are
not, in the merged model all input variables will appear unformatted next to the
variable in an unreadable way. This is hardly readable.

4 Merger technology
Merger was developed as a standalone Java application, build against Java 1.5. Its core
functionality is built on Regular expressions, using the Java implementations included
in the package java.util.regex described in the java documentation (Sun Microsystems
Inc. 2004).

"Regular expressions" is a technology for finding text patterns, which is essentially
what a computer is doing when interpreting computer program code. Therefore, they are
very well suited for analyzing Vensim SD code on the ASCII text level.

Merger works only with the text version of Vensim SD models. It decomposes a set of
given SD models using Regular expressions and recombines all elements into one valid
SD model, omitting double defined variables.

The fundamental algorithm for combining various modules into one model is extremely
simple:

For each variable in all in-groups of the modules, merger checks if this variable is de-
fined in any of the provided set of modules. If this is the case, the variable definition in
the in-group (by definition, a data variable, see above) is deleted and only the definition
of the variable containing the calculation is kept, thereby the module which uses the
according variable as exogenous data in its in-group when run as standalone model,
now uses the endogenous calculation of that variable as it is merged with the module
where this variable is calculated. Figure 2 gives an example of this. Also, if a variable
from the in-groups is not found in the given modules, it remains as data variable in the
in-group of the newly created model, remaining exogenous. This can be the case if only
a subset of all modules is merged.

5 Version-controlled repository for ASTRA
Additionally to the modularization, we introduced a so called version controlled reposi-
tory for storing the ASTRA model. This is a technology used for team-working in soft-
ware development. We decided to use Subversion (available at subversion.tigris.org), an
open-source software being a wide-spread standard in the software developing commu-
nity.

This technology offers various benefits:

• enabling a group of people to simultaneously work on a shared set of files,

• tracking changes on a set of files

9

• providing access to all previous versions of all files

• providing a reference so everybody has the possibility to always work on the latest
version of these files.

This is achieved by simply always storing everyone's work in the repository and by al-
ways downloading the latest version from the repository before starting to work. The
advantage compared to a normal centralized file server is that subversion notices and
informs the user if he tries to overwrite a file which was modified in the meantime by a
different user, which is the classical problem in a teamwork environment, visualized in
Figure 3. In this case, the user is then able to merge the two different versions into one
and make sure that the new version of the file still works.
Figure 3: The problem to avoid during distributed development

Source: Subversion documentation (Collins-Sussman et al.)

This is where the modularization of ASTRA turns out as highly useful. Since ASTRA
has been split into more than 40 modules these kinds of conflicts are minimized.

Also, an essential feature of a version controlled repository is the access to all previous
versions of all files. Therefore, it is only a minor problem if some developer publishes a
not functioning module or if any other file turns out to be incompatible with the rest of
the model files. Simply stepping back in revision history solves the problem.

The workflow using a repository is only slightly different compared to working the tra-
ditional way without version control. Using a repository, working with the relevant
model files does not change. All model files are still located locally in a random folder
on the modeller's hard drive. The difference is in having a common reference of the
model files available via internet. And the local folder is connected to the shared reposi-
tory.

10

Crucial is the fact that this connection is not automated in either direction. This means
that the user needs to take an active decision on synchronizing his local work with the
shared repository. This synchronization process has to be done separately for sending
changes to the repository and for receiving changes from the repository. This is very
convenient in every day work, due to many situations in which the user would like to
get the latest changes in the repository, but does not yet want his work to be published
or vice versa.

The resulting workflow is:

1. Start working by making a so called update ,i.e. copy the latest changes from the
repository to the local folder.

2. Modify the local copy, called the working copy.

3. Whenever achieving a stable version, commit the local changes to the repository, i.e.
send the local modifications to the repository and thereby publish these changes
within the workgroup.

The security level of our repository is sufficient for our needs. Subversion is plugged
into an Apache server, the connection is established via an https connection, with every
user having a user name and password. There are probably ways to hack into our sys-
tem, but it is most definitely more secure than sending our model files via non-
encrypted emails, which was the standard before using our repository.

6 Practical workflow using Merger
Eventually, we would like to shortly present the steps we had to take to split ASTRA
into more than 40 modules and the steps we take whenever we want to generate a com-
plete model from our modules.

6.1 Splitting up ASTRA
Splitting up ASTRA was by far the most work intensive task of the whole project. We
worked in several steps. First, one developer had to split the complete model into three
parts, introducing the interfaces and conventions as described above. Then, each part
was assigned to one partner institute. There, the splitting continued. During an interme-
diate status we had all nine functional modules available as standalone models. And
finally, these were further split to eventually more than 40 modules.

In order to produce the exogenous data necessary for the interface variables of each
module, a savelist1 was compiled for each module containing the variables of the in-
group. With this savelist, we export exactly that data from a complete model result set
(a so called run) which we need as exogenous data for the standalone module. The
compilation of this savelist is also automated using regular expressions.

1 Vensim terminology for a list of variables used to extract data from a model run result set.

11

6.2 Merging modules into one model
Producing one valid SD model from all our modules or even from only a subset thereof
is nothing more but executing a single batch file which starts the Merger. All possible
settings are stored in a configuration text file and a text file containing the list of all
modules that should be included in the merge. The configuration file is used for defin-
ing the file list of exogenous data files of the resulting merged model as well as the
name for the next run with that new model.

These configuration possibilities enable us to execute the Merger, open the newly gen-
erated model with Vensim and start the simulation directly, without any further modifi-
cations needed. This makes it a highly practical tool for our needs.

7 Conclusion
We would like to stress the highly practical every day use the described transformations
brought to us. We experience a significant facilitation of the maintenance of our highly
sophisticated ASTRA model due to the introduction of the modular design as well as
the appliance of a version controlled repository. It was a necessary step, and we would
take it again if we had to make the same decision with the experiences we have today.
We are convinced that this is a very good way to develop and maintain such a complex
model. Without modularization and a version controlled repository, significantly more
time would be needed for purely repetitive tasks not related with the content of our
work. The implementation of the described steps gives us notably more time to do quan-
titative policy analysis rather than purely technical maintenance as it used to be before
we completed this project.

Naturally, there are problems with our new way of working which should not be omit-
ted. When working with a version controlled repository, it is possible that a developer
publishes a module which is not compatible with the other modules anymore. If he does
so, he did not test with the rest of the modules in the repository before. This is a clear
violation of the rules of team development, but it happens, simply because it is possible.
This case is not a major problem, because any team member has access to all previous
versions at any time, but it causes trouble.

Nevertheless, this example of trouble according to our experience is very insignificant
compared to the major advantages inherent to a version controlled repository and a
modularized large scale SD model.

12

List of figures
Figure 1: Overview on the ASTRA model..4

Figure 2: Example of the basic functionality of the Merger ...6

Figure 3: The problem to avoid during distributed development......................................9

References
Collins-Sussman, B.; Fitzpatrick, B.W.; Pilato, C.M. Version Control with Subversion -

For Subversion 1.4. Online: http://svnbook.red-bean.com/.

Krail, M.; Schade, W.; Fiorello, D.; Fermi, F.; Martino, A.; Christidis, P.; Schade, B.;
Purwanto, J.; Helfrich, N.; Scholz, A.; Kraft, M. (2007): Outlook for Global
Transport and Energy Demand, Deliverable 3 of TRIAS (Sustainability Impact
Assessment of Strategies Integrating Transport, Technology and Energy Scenar-
ios). Funded by European Commission 6th RTD Programme. Karlsruhe, Ger-
many.

Schade, W. (2005): Strategic Sustainability Analysis: Concept and application for the
assessment of European Transport Policy, Dissertation Thesis (2004) at Univer-
sity of Karlsruhe, NOMOS-Verlag, Baden-Baden.

Schade, W.; Helfrich, N.; Wietschel, M.; Krail, M.; Scholz, A.; Kraft, M.; Fiorello, D.;
Fermi, F.; Martino, A.; Schade, B.; Purwanto, J.; Wiesenthal, T.; Christidis, P.
(2008): Alternative Pathways for Transport, Technology and Energy to promote
sus-tainability in the EU, Deliverable 4 of TRIAS (Sustainability Impact As-
sessment of Strategies Integrating Transport, Technology and Energy Scenar-
ios). Funded by European Commission 6th RTD Programme. Karlsruhe, Ger-
many.

Schade, W.; Krail, M. (2006): Modeling and calibration of large scale system dynamics
models: the case of the ASTRA model, paper presented at the 24th International
Conference of the System Dynamics Society in Nijmegen, The Netherlands,
July 23-27th 2006.

Sun Microsystems Inc. (2004): Java 2 Platform Standard Edition 5.0 Documentation.
Online: http://java.sun.com/j2se/1.5.0/docs/api/.

Thompson, D.; Bush, B.W. (2006): Group Development Software for Vensim, paper
presented at the 24th International Conference of the System Dynamics Society
in Nijmegen, The Netherlands, July 23-27th 2006.

http://svnbook.red-bean.com/
http://java.sun.com/j2se/1.5.0/docs/api/

	Introduction
	Where we came from – the structure of ASTRA
	Merger functionality & module definition
	Interfaces between modules
	Special variable groups
	Syntax of a module
	Formatting of a module

	Merger technology
	Version-controlled repository for ASTRA
	Practical workflow using Merger
	Splitting up ASTRA
	Merging modules into one model

	Conclusion
	List of figures
	References

